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Z, and Z;®Z,8 7, symmetry protected topological paramagnets

1. Symmetry Protected Topological (SPT) phases: An extension of Landau’s

framework
2. Mathematical background
3. Gapless edge states as an hallmark of non-trivial SPT phases

4. Conformal properties of edge states. Open problems

1. Hrant Topchyan, Vasilii lugov, Mkhitar Mirumyan, Shahane Khachatryan, Tigran Hakobyan,
Tigran Sedrakyan ----- JHEP 12. 129 (2023)

2. Hrant Topchyan, Vasilii lugov, Mkhitar Mirumyan, Tigran Hakobyan, Tigran Sedrakyan,
and Ara Sedrakyan ----- arxXiv: 2312.15095; SciPost----in press



The traditional Landau theory of phases and phase transitions classifies phases of
matter based on spontaneous symmetry breaking (SSB) and the associated local
order parameters. According to Landau, different phases correspond to different
symmetries: when a system undergoes a phase transition, it typically breaks certain
symmetries, and the nature of the broken symmetry characterizes the phase.

Can this approach be extended?  Yes, towards the topology.

Topological insulators are new states of quantum matter which can not be adiabatically
connected to conventional insulators and semiconductors. They are characterized by a full
insulating gap in the bulk and gapless edge or surface states which are protected by time-
reversal symmetry. These topological materials have been theoretically predicted and

experimentally observed in a variety of systems, including HgTe quantum wells, BiSb alloys,
and Bi_2 Te_3 and Bi_2 Se_3 crystals.



The discovery of topological insulators and topological superconductors was a major
breakthrough in the study of symmetry protected topological phases. Later, it was
realized that such phenomena is not restricted to free fermion systems, but can be
found in general interacting systems as well. A systematic study of interacting SPT
phases followed, although the simplest interacting SPT model, the Haldane chain,
has been known since the 1980s. It is Heisenberg model of spin 1.

F. D. M. Haldane. Physics Letters A, 93:464, 1983.

It appeared, that spin one and all odd spin Heisenberg models are gapped, but
they have zero energy edge states. How to see them? Example is

the simplest 1D SPT model, the AKLT model

|. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki--Phys. Rev. Lett., 59(7):799-802 (1987)



Ground state Is a product state and 4 fold degenerate
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WAKLT) = ]___[ Py
where P{ = [L)(T715 |+ [ = 1) {{jd; |+ ﬁ 0) ({13 | + (15 1)

|s the projection of two spin states back to spin 1
The system is gaped and we have massless states at the ends of chain



The definition of symmetry protected topological phases (SPT)
[Chen, Gu, Wen, 2010]

A local lattice Hamiltonian belongs to a symmetry protected topological (SPT)
phase if obeys the following conditions:

m Short-range entangled, i. e. can be prepared from a product state by a
finite-depth quantum circuit (FDQC).

m Symmetric: It is invariant under the onsite G symmetry.

m [t has the unique gapped ground state.

Different SPT phases

m T'wo SPT states belong to the same phase, if are connected by FDQC, composed
of symmetric gates.

m An SPT state is trivial if it belongs to the same phase a product state,

m In contrast, a nontrivial SPT state cannot be disentangled by applying a FDQC
with symmetric gates.



m They composed from local unitary (LU) transformations each given by a

»Hamiltonian” H (9) =>_,0i(g),

U="Te " Jo d9H(9)

m The FDQC example:

71 12 13 14 15 1 17 18 19 110 111
with local the unitaries

T Y !
__ Jrt1tats __ rr*%10
Uizs = Ui1i2i3 ’ Us,10 = Uigi?m "



In short terms

Consider spin Hamiltonian H(S), which is G-symmetric
[H(S),G]=0

Consider unitary transformation of the Hamiltonian by G-symmetric U

~y

H'=UH(S)U '=H(USU ")=H(S)

The spectrum of the system remains the same
but the ground state changes

Yo ' =U W

If there is no all the way G-symmetric U(t), such that
U(0) =1 while U(1) = U, then we have different SPT
phases



Classification of SPT phases

m Symmetry protected topological orders in d dimension are classified by their
symmetry group cohomology [Chen, Gu, Liu, Wen, 201 1]

H'TYG,U(1)), U(1) = {e'?} is formed by GS wavefunction’s phases

What are the cohomologies of groups?

n-simplex (g1, ..., gns1).~ (881, - -, €n+1) .€EGXGXG...=G™"

GG XA XA XAE=... Semisimplicial complex
. e
Boundary operation

5(g1,925--90)=2 (=1)(g1,-- G- g0)



group of formal linear combinations of n-simplexes with U(1) coefficients ~ C,(G;U (1))
called chains

Consider now linear g-invariant functions - EX----XE ~ U<1) on chains

n+1

0(9G90,9G95s--99,)=9P(Gos-egu)

Functionsv=e'?, called n—dimensional cochains , form a group of cochains C"(G; U (1))

Boundary operation
k+1

(5'110(-991 s ,,Q'ﬁc—l—l) — Z(—l)‘!gﬁ?(gn, s :ﬁf: v :-,Q'ﬁc—|—1);
[=0

m The 0 operator is nilpotent: 62 0=0 mod 27 ,= 52 v=1



For convenience one also can define ¢—cochain

$(91,915-9.)=9:9(1,91,9192, 9192935 919> Gn)

Then the boundary operator § forit become

56(91,91:--0,)=0:0(02. 95,9+ 2, (1) $(9,,-9;" 9019,
+(=1)"9(gy,-gn)
Again 5°9=0, w=e"?
Operator defines cohomology groups

o)



For the group elements in 0= ei¢ 0
multiplicative exponential form

Il
=

uor (1. 1) = wi(na)wi(n) |
wi(n1 + na)
ﬁwg(ﬂ.l . '?E:-}) _ mz(nz, ﬂﬂ}wg [:-;11, no + ﬂ-ﬂ} 1
Lr.)g(ﬂ.l + 119, ﬂ-g}ﬁdg(ﬂ], ﬂ.g}

w3 (ng, n3, ng)ws(ny, ng + ng, ng)ws(ni, ng, n3)

dws(ny, no,ng,ng) =

w3(n1 + no, n3, ng)wz(ng, ng, ng + n4)

Pentagon identity > dws(ny,n2,n3,ng) = 1

W, IS an exact form



C<Y(G,U(1)) CY(G,U(1)) C<1(G,U(1))

Group of cohomology

Ker 6
[m ak—1

H*(G,U(1)) =



SPT phases are classified by the cohomology group
Chen, Gu, Liu, Wen, 2011

H™(G,U(1))

In achainmodels d=1 and we have H*(G,U(1))

In aplainmodels d=2 and we have  H’(G,U(1))

Simple SPT model in d=2 with Z, symmetry was constructed in

M. Levin and Z.-C. Gu. Braiding statistics approach to symmetry-protected topological
phases. Phys. Rev. B, 86:115109 (2012)

Ising model on triangular lattice in paramagnetic phase

. x . .
HI__ZP Xp Xp_gp Pauli matrix



m There are two different SPT phases with G = Z2 symmetry in d = 2 dimension,
since

HT(Zo, Uy) = Zs

m The trivial phase is given by paramagnetic Ising model

Hy = —ZXP,
P

with
lgs) =100...0) = Z lar ... an),
a; =T,
e L where |0}, |1) = | 1) £ | |) relate X and Z eigenstates.

i /\/\/\/ = Invariant under ¢ = Z> group with X = [[ X,



m There is unitary map from Hp to Hy by

U — (_ 1)Zt1‘ianglea npnan—l_zlinks ﬂpnq_l_zvert.exes Mp

= [ cCZpq H C'Zpq H Z,

p.q,7v

m Domain wall description of the ground state,

|gS Z ( 1#(dcrma1nwalls)‘ ):‘TT>_|~LTT>+

ap=T,|




Three-state Potts model

1. Hrant Topchyan, Vasilii lugov, Mkhitar Mirumyan, Shahane Khachatryan, Tigran Hakobyan,
Tigran Sedrakyan ----- JHEP 12. 129 (2023)

2. Hrant Topchyan, Vasili lugov, Mkhitar Mirumyan, Tigran Hakobyan, Tigran Sedrakyan,
and Ara Sedrakyan ----- arXiv: 2312.15095; SciPost Phys. 18, 068 (2025)

L a j : —
H!T:' — ,} E {Er'?rt— r i L = 1,— r—-;; {";;:‘4- | ‘ . 1-

re20) p re20
010 10 0 -
XF=(X)'=1001], Sz=1000 |, c—p 3
100 00 —1
Algebra

52 1_SZ 4 3 — 33
XES5F = FlSExE (X3 = (X7)3 =



Colored three-state Potts model in paramagnetic phase

G=/723x%x/3%x/3
HO:—Z (X2+X;“) a=1,2,3

| |
/. Ising symmetry group is X H X
m.i=1.2.3

p,x

SPT phases will be defined by the cohomology group
H*(Z,XZ,xZ,,U(1))=(.xZ,)



SPT states via cohomologies

We should form Z3 symmetric unitary operator U as a product of operators defined on triangles

\VAVAVAVAVA u=]]uUl(n,,n},n)
VAVAVAVAVAN ey 7
\VAVAVAVAVAREERUUN SE B A
/\/\/'f\/\A l, ], k = 1,2,3 are color indexes
V\A/\N n,=S'=-1,0,+1

represents Z_3 in additive form

+ o

\8)

We have 7 choices of colors i, j, k on triangles:  {i,i,i} ---3; {i,i,j}---3; {l,},k}--- 1



Topologically non-trivial co-cycles of  H*(Z,xXZ,xZ,,U(1))=(.xZ,)" are

-.‘1]_ (2)_ (3)
2mi wg™(n1,nz,ng) =™ "2 "™
3
. ClEy ) ey oiw) (i)
L.JJ-E;[:'.'I’E'L,T?-Q._ ’ﬂ'-:a) _ .’-__”] T T (ug +iiyg )? i = l, 2“;
mflgj{ﬂ.1rn.:z.n:s} = “‘*i J”.le" ) (”‘lf “:&'H) 11={1,2,2}, {1, 3,3}, {2,3,3}

We will consider now the diagonal case 1,2,3 when all colors are different.
It is diagonal embedding of Z 3 into (x Z _3)7

U (ny,n,,n5)=v4(0,n7, 05,05, )= (ny,ny—ny, ns—n)

- A QP )
U = H v3(0,n2, ns, ng)5 8 = Hw;g(nf‘, ng —n, ng —ng)Se

) A



U — I | EH[&:I.’.'.].’.'.'._..]IL_g{rH.!—'r.']:I
FAY

Here /\ represents the triangle. S(A)=+1 s a sign factor associated
triangles in a staggered way

The staggering of sign factor was included to
ensure the symmetry of U under Z_3 Ising

=1 X - = H anl.:"-

m.i=1.2.3

UX =X"U

This U creates non-trivial SPT phase, which will
manifest itself in formation of massless edge state
on the boundary of the sample.




Finally, all terms together give following symmetric boundary Hamiltonian

{‘” + —1y+ +—1 1
Hy, = Z (XF + 01X+ QX 00+ Hee)
HY), = —Z(J{;+Z+ XF Zf + 2y X Zyyy + Hee),

T}

This Hamiltonian is massless. To see it consider

H{'rﬂn

edge

(A, A2, 23) = =Y (WX +MZl (XJZF +MaZ [ XJZ, +Hec).

p—1 p—1 p+
D

This Hamiltonian is self trial under

X0 =0, X, Q=27 | X, Z

d+ +
n— p+12 Zp _ Zp

Therefore, at equal couplings it should be massless



E— (kN + b)

o
[}

Conformal properties of low lying excitations of the model. What CFT is responsible for them?

0.8

o
o

o
»

0.0

We have calculated gap of the model numerically

— 2m 0.66625

A An = = - O(1072).

According to J.L.Cardy-Nucl.Phys. B270, 186 (1986)
X=0.66625= 2/3 is the conformal dimension

of the scaling operator concerned with correlation

50

100 150 200 250

N length



Entanglement entropy

2.2 1

J
=)
1

1.8 +

=
[=9]
L

=
Y
L

1734 1

.04

Entanglement entropy of the model

N=260

T
30

T
100

T
150

T
200

T
250

According to
J.L.Cardy-Nucl.Phys. B270, 186 (1986)

Finite size behavior of the entanglement

entropy of the model defines its central
charge

=1..... N

Numerical calculations gave

C=1.73



Summary and open problems

1. We have constructed SPT model with Zs><Z3><Z3 and

/Z, symmetries

2. Numerically have argued that they are massless and at critical point
SU (3),

model with k=2 and k=1
SU (2),

they have CFT limit as coset

respectively

3. What are the statistical properties of the excitations in the edge model?
How they are linked with primary fields in CFT? What kind of defects

of the standard model leads to corresponding fields/excitations?
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