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Blazars: Powerful and Rare Objects
The common model for blazar emission is that these sources are quasars in which a relativistic jet is pointing at the 

observer or very close to the observer’s line of sight.

Blazars are rare objects. Even when combining data from multiple surveys, only about 6,000 
sources exhibit blazar-like features among an estimated 100 to 200 billion galaxies.

Why blazars are interesting ?
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observer or very close to the observer’s line of sight.

Blazars are rare objects. Even when combining data from multiple surveys, only about 6,000 
sources exhibit blazar-like features among an estimated 100 to 200 billion galaxies.

Why blazars are interesting ?

 High powers: most powerful “non-explosive” sources in the Universe ( ) ∼ 1049 erg/s

 Fast variability/small emitting region; R ≤ c tvar /(1 + z)

 Broadband emission: from radio to VHE -rayγ

 Dominant sources in HE -ray sky: of 4FGL-DR3 sources are blazars.γ ∼ 55 %

 Relativistic jets: emission is strongly Doppler amplified

 Blazar emission is often highly polarized, in the radio, optical, and X-ray bands

 The powerful jets of blazars are powered by accretion onto supermassive black holes

 Blazars are important sources in MM astronomy, being linked to VHE neutrinos
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Astrophysical Messengers

Our knowledge of the Universe relies on four cosmic messengers:
  Gravitational waves 
 Photons 
 Cosmic rays 
 Neutrinos 

The information from these messengers spans a 
vast range of energies and frequencies, covering 
50 orders of magnitude
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What is the origin of the multiwavelength 
emission?

The information from these messengers spans a 
vast range of energies and frequencies, covering 
50 orders of magnitude
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Origin of Multiwavelength Emission: Leptons
The double hump structure of the blazar broadband SED: the low-energy component usually peaks between far infrared and X-
rays, while the high-energy (HE) component is observed between X-rays and very high-energy (VHE) γ-rays.
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Origin of Multiwavelength Emission: Leptons
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The double hump structure of the blazar broadband SED: the low-energy component usually peaks between far infrared and X-
rays, while the high-energy (HE) component is observed between X-rays and very high-energy (VHE) γ-rays.
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synchrotron radiation

Inverse Compton scattering

The double hump structure of the blazar broadband SED: the low-energy component usually peaks between far infrared and X-
rays, while the high-energy (HE) component is observed between X-rays and very high-energy (VHE) γ-rays.
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Our knowledge of the Universe relies on four cosmic messengers:
  Gravitational waves 
 Photons 
 Cosmic rays 
 Neutrinos 

The information from these messengers spans a 
vast range of energies and frequencies, covering 
50 orders of magnitude

  Gravitational waves 
 Photons 
 Cosmic rays 
 Neutrinos 

Blazar emissions can be investigated by detecting photons 
with energies ranging from radio to HE and VHE γ-rays. 

Blazars are associated with VHE neutrinos.

What is the origin of the multiwavelength 
and multimessenger emission?



SMBH
Accretion disk

BLR clouds

Dusty torus
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The double hump structure of the blazar broadband SED: the low-energy component usually peaks between far infrared and X-
rays, while the high-energy (HE) component is observed between X-rays and very high-energy (VHE) γ-rays.
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The double hump structure of the blazar broadband SED: the low-energy component usually peaks between far infrared and X-
rays, while the high-energy (HE) component is observed between X-rays and very high-energy (VHE) γ-rays.
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Origin of MW and MM Emission: Protons

Proton emission

synchrotron radiation

The double hump structure of the blazar broadband SED: the low-energy component usually peaks between far infrared and X-
rays, while the high-energy (HE) component is observed between X-rays and very high-energy (VHE) γ-rays.
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Multiwavelength + Multimessenger data



Multiwavelength + Multimessenger data
Petropoulou et al. 20203HSP J095507.9+355101
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Neutrinos from PKS 0735+178

IceCube-211208A neutrino 
with an estimated energy of 

172 TeV

2021-12-08   
Time: 20:02:51.1
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MW lightcurve of PKS 0735+178

Sahakyan, Giommi, Padovani, et al., MNRAS, 2023
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MW lightcurve of PKS 0735+178 and origin of the emission

Sahakyan, Giommi, Padovani, et al., MNRAS, 2023



MW lightcurve of PKS 0735+178 and origin of the emission

Sahakyan, Giommi, Padovani, et al., MNRAS, 2023
Modeling using the code SOPRANO 

Gasparyan, Bégué, Sahakyan 2022



Computational Challenges and ML-based Solutions
Traditional Modeling : 

Frequent likelihood evaluations, making computations time-consuming. 

Models computed for each dataset, resulting in redundant and costly 

computations. 

For Bayesian fitting, models must be evaluated - times.104 105

Computation Time Estimates (8 cores) : 

SSC / EIC model: ~30 sec → 3.5 – 35 days 

Hadronic model: ~90 sec → 10 –100 days



Computational Challenges and ML-based Solutions
Traditional Modeling : 

Frequent likelihood evaluations, making computations time-consuming. 

Models computed for each dataset, resulting in redundant and costly 

computations. 

For Bayesian fitting, models must be evaluated - times.104 105

Computation Time Estimates (8 cores) : 

SSC / EIC model: ~30 sec → 3.5 – 35 days 

Hadronic model: ~90 sec → 10 –100 days

Machine Learning for Accelerated Model computations: 

Efficient: avoids exhaustive parameter space exploration. 

Reusable across different datasets after training. 

Several orders-of-magnitude faster evaluations.

References : 

Bégué, Sahakyan et al., ApJ, 963, 71 (2024) 

Sahakyan, Bégué et al., ApJ, 971, 70 (2024) 

Sahakyan, Bégué et al., ApJ, 990, 222 (2025)
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Convolutional Neural Network
Why CNN? 

Structured Data Handling: Ideal for 1D structured inputs like spectra and 

time-series. 

Pattern Recognition: Detects local emission features 

Parameter Scalability: Scales well with complex, high-dimensional inputs.

Architecture Overview 

Input: 10 physical parameters 

Dense  5×Conv1D  MaxPool  Flatten  Dense 

Output: 150 independent  observables

→ → → →
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from D. Bégué (https://www.youtube.com/watch?v=L3KxgWYghHE)

What is CNN doing ? 

https://www.youtube.com/watch?v=L3KxgWYghHE
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Training CNN Surrogates for Hadronic Blazar Models

CNN trained on 7 million spectra generated using the SOPRANO 
code. 

Training spans 10-dimensional parameter space with broad, 
physically motivated ranges.

parameter  
sets SOPRANO photon  

spectrum

CNN

80 % 10 %10 %

testtrain validation

Sahakyan, Bégué et al., ApJ, 990, 222 (2025)



Parameter Estimation in hadronic Modeling
Modeling the SED of TXS 0506+056 during the IceCube-170922A neutrino 

event using a convolutional neural network trained on hadronic models.

Model parameters for TXS 0506+059

Posterior Distributions from CNN-based Fit

Sahakyan, Bégué et al., ApJ, 990, 222 (2025)
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Markarian Multiwavelength Data Center

Sahakyan et al., 2024, ApJ, 168, 289, 2024

https://mmdc.am/



Data access











Key Result 
✓CNN-based training for hadronic & lepto-hadronic models 
✓Achieves full multimessenger data fit in ≈3 minutes 
✓No one else can currently fit, let alone this fast 

Traditional HPC Requirement for a single fit 
• One job: 8 cores × 2 min = 16 core-minutes 
• 100,000 jobs = 1.6 million core-minutes 
• To finish in 3 min: ≥533,000 cores 
• “Aznavour” Supercomputer resources (24,480 cores): 

Runtime ≈65 min 
CNN Approach 

Train once → inference is instantaneous

Runtime (minutes) for 100,000 jobs

CNN

“Aznavour” (~24k cores)

Ideal HPC (~533k cores)

0 18 35 53 70

Rapid Multimessenger data Fitting



Markarian Multiwavelength Data Center (MMDC): a platform for building and 
analyzing multiwavelength SEDs.

Sahakyan, N., et al., ApJ, 168, 289 (2024)

Users of MMDC 
 Accessed from 50 countries worldwide 
 Total number of jobs requested: 66,301 
 Selected countries include: 

1. 🇦🇲 Armenia 
2.  🇺🇸 United States 
3.  🇨🇳 China 
4.  🇷🇺 Russia 
5.  🇮🇳 India 
6.  🇩🇪 Germany 
7.  🇫🇷 France 
8.  🇮🇹 Italy 
9.  🇬🇧 United Kingdom 
10. 🇪🇸 Spain  
11. 🇵🇱 Poland  
12. 🇬🇷 Greece  
13. 🇧🇷 Brazil 
14. 🇦🇷 Argentina 
15. 🇯🇵 Japan 
16.  ……. 
17.  ….. 



Next step



Next step

AI-powered domain-specific multi-agent research 
assistant for advancing Astrophysical Discovery 

AstroGenesis will make the simple simpler and complex possible


