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Topology and quantum chaos in strongly correlated systems

• Disordered systems over flatband 
featuring lattices

• Disorder-induced SYK systems on 
Moire lattices (MATBG)

• Sytems with symmetry-protected 
topological phases

• Scale-free disordered networks
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• Quasiclassical picture of IQHE and Chalker-Coddington model

• Random Network (RN) models: induction of gravity

• Harris Criterion and scale-free networks

Harris-Luck criterion in the
Integer quantum Hall effect



Classical theory and the strong field experiment
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The mechanisms behind the effect

1. Condensation to Landau levels 2. Randomness of the medium

State “widths” decrease with increasing field

Fermi sea of Landau levels

Some random potential 
that exists in the medium

The edge of
the Fermi sea

Conductance will occure when the edge 
states are partially occupied



The edge states and tunneling conductivity

Semi-classical image of electrons 
moving pattern in the Fermi sea

The edge states are still localized

Fermi sea = many Fermi lakes

The edge state electrons delocalize 
due to tunneling and thus create 

conductivity

Tunneling happens almost 
only at the saddle

points of the potential 



Chalker-Coddington model
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Transfer matrix Random phases

Random phases create Anderson localization
and thus allow critical behavior



Comparison to experiment

Localization length index

Experimental value: 𝜈 = 2.38 ± 0.06

𝜓0𝜓𝑁 ~𝑒
−𝑁/𝑁0

The index value for CC model:

(W.Li et.al. PRL, 102, 216801 (2009))

The phase randomness isn’t enough

The model doesn’t consider interaction

𝜈 = 2.593 ± 0.006 : Ohtsuki, et.al. PRB 80, 041304 (2009)

𝜈 = 2.62 ± 0.01 : M. Amado, et.al. PRL 107, 066402 (2011)

𝜈 = 2.57 ± 0.02 : J.P.Dahlhaus, et.al. PRB 84, 115133 (2011)

𝜈 = 2.62 ± 0.06 : H. Obuse, et.al. PRL 109, 206804 (2012)

𝜈 = 2.56 ± 0.01 : W. Nuding, et.al. PRB 91, 115107 (2015)

𝑁0 = 𝑥 − 𝑥𝑐
−𝜈Correlation length

Calculations have finite size

Particle energy 𝑥 System width 𝑀

Lyapunov exponents Γ(𝑀, 𝑥)

𝜈

Finite size
scaling



Geomerty randomness



Random network model

or
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An example of a modification 
with 𝑝 = 0.25

I.Gruzberg et al. PRB 95, 125417 (2017)



RN comparision to experiment

𝜈(1/3) = 2.37 ± 0.02

𝜈𝑒𝑥𝑝 = 2.38 ± 0.06

W. Nudding et.al. PRB 100, 140201 (2019)

𝜈(1/3) = 2.398 ± 0.006

H.Topchyan et al. PRB 110, L081112 (2024)

I.Gruzberg et al. PRB 95, 125417 (2017)



Harris Criterion

Can the disorder change the critical behavior? Approaching 𝑥𝑐

Increasing 𝜉

𝑥𝑐
(𝑖)

approaches 𝑥𝑐

At phase transitions correlation length is infinite

Correlated subsystems have their own critical point 𝑥𝑐
(𝑖)

The larger the subsystem, the better the averaging

𝜉

We are
faster

𝑥𝑐
(𝑖)

are
faster

Subsystem phases

The disorder is

Diverge

Significant

Converge

Irrelevant

Critical indices (such as 𝜈) can’t change if the disorder is irrelevant



Harris Criterion

𝑥𝑐 → 𝑥𝑐 ± ∆𝑥𝑐 , ∆𝑥𝑐~𝑁
−1/2

𝑁 random parameter changes:

Random parameters on latitce of size 𝐿 in 𝑑 dimensions:

𝑥𝑐 → 𝑥𝑐 ± ∆𝑥𝑐 , ∆𝑥𝑐~𝐿
−𝑑/2

The critical behavior is stable against random defects if ∆𝑥𝑐 < 𝑥 − 𝑥𝑐 will hold when 𝑥 → 𝑥𝑐. 

Correlated region size:

𝜉~(𝑥 − 𝑥𝑐)
−𝜈

Dispersion of local critical values against our distance from the non-disordered critical point:

∆𝑥𝑐~𝜉
−𝑑/2~(𝑥 − 𝑥𝑐)

𝑑𝜈/2

𝑑𝜈 > 2



A different “frozen” geomety 
produces same exponent value, with 
a significantly different fixed point.Kagome lattice

𝜓1
⋮
𝜓𝑛

𝑅

= ⋯  𝑈 𝑇3  𝑈 𝑇1  𝑈 𝑇2  𝑈 𝑇1

𝜓1
⋮
𝜓𝑛

𝑁

𝜈 = 2.66 ± 0.04

I.Gruzberg, et.al. PRB 102, 121304 (2020)

Hints of breaking of Harris Criterion



Harris-Luck Criterion

Trivial cases of Harris Criterion breaking are 
disorder correlations, or topological effects.

Regular lattice

Random Voronoi-Delauney triangulation

Dynamical triangulation

Wandering exponent is a phenome-
nological descriptor of the disorder.

∆𝑥𝑐~𝐿
−𝑑/2 → ∆𝑥𝑐~𝐿

−(1−𝛽)𝑑

𝑑𝜈 < 2 → 1 − 𝛽 𝑑𝜈 < 1

wandering exponent

W.Janke, et.al. PRB 69, 144208 (2004)

Connectivity distribution for random networks

𝑃 𝑞 = 0, 𝑞 > 𝑞0

𝑃 𝑞 ~𝑞−𝜎𝑞 , 𝜎 ≈ 2

𝑃 𝑞 ~𝑒−𝜎𝑞 , 𝜎 = ln 4/3

𝛽 = 1/2

𝛽 = 1/2

𝛽 ≈ 3/4



Scale-free Networks
Regular lattice

Random Voronoi-Delauney triangulation
Dynamical triangulation

Scale-free networks

𝑃 𝑞 = 0, 𝑞 > 𝑞0
𝑃 𝑞 ~𝑞−𝜎𝑞 , 𝜎 ≈ 2
𝑃 𝑞 ~𝑒−𝜎𝑞, 𝜎 = ln 4/3

𝑃 𝑞 ~𝑞−𝜎

𝛽 = 1/2
𝛽 = 1/2
𝛽 ≈ 3/4

𝛽 = ?

Connectivity distribution GKNS random networks Connectivity distribution for random gaussian potentials

𝜎 ≈ 2.5
H.Topchyan, et al. PRB 111, L100201 (2025)



Harris Criterion for IQHE on GKNS networks
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Critical value is calculated as the 
point of maximum conductivity 

Uniformly distributed Monte-Carlo sampling 
is achieved through 𝑝 = 1/3 RN generation

A given patch size 𝐿

Various network
realizations

…

Phase averaging

Tiling …

…

Conductivities at 
different energies

Critical points

Critical point dispersion

𝑥𝑐,1 𝑥𝑐,2 𝑥𝑐,3 𝑥𝑐,𝑘



 ∆𝑥𝑐
𝐿
= 𝑥𝑐,𝑖

(𝐿)
− 𝑥𝑐,𝑖

(𝐿)

2

Harris Criterion for IQHE on KNS network

“Naïve”
dispersion

Computation 
uncertainties

Not considering 𝑫𝑳 could results in studying our 
uncertainties, instead of the proposed model.

For larger 𝐿-s ∆𝑥𝑐
(𝐿)
~const~𝐿0, implying 𝛽 = 1. The corresponding Harris-Luck criterion reads as 𝟎 < 𝟏.

The GKNS network disorder (maybe also any scale-free network?) never satisfies the irrelevance condition.



Conclusion and future work

• The mismatch between the Chalker-Coddington model and the experimantal 
results can be fixed through network randomzation

• GKNS disordered networks constitute a significantly different universality class of 
scale-free networks, which are purely studied in condensed matter context

• Additional properties such as percolation point, curvature correlations, scaling 
behavior, etc. can be studied understand the source of difference between GKNS 
networks from other random networks. This can go as far as solving the measure 
problem of 2 dimensional surfaces.



Thanks for attention


	Geomerty of random potentials. Indoction of 2D gravity in quantum Hall plateu transitions
	Geomerty of random potentials. Indoction of 2D gravity in quantum Hall plateu transitions

